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Solution of Fokker-Planck Equation Using Trotter's 
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Solution of Fokker-Planck equation using Trotter's formula is discussed. The 
method is illustrated on the linear Fokker-Planck equation and the Ornstein- 
Uhlenbeck solution is obtained. For the case of a general nonlinear Fokker- 
Planck equation the method yields an integral representation amenable to 
approximations. In the lowest order approximation Suzuki's scaling result 
emerges. Physical interpretation and limitations of the approximations are also 
discussed. 
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1. INTRODUCTION 

In the Langevin approach to problems in irreversible statistical mechanics, 
the deterministic equation of motion is made stochastic by addition of a 
random noise term. Alternately one can model the problem by an equiva- 
lent Fokker-Planck equation (FPE) (1) for the probability density of the 
solution process. Both these equations are in general nonlinear and are not 
amenable to closed form solutions. Approximate procedures have become 
imperative. For physical systems that have a unique single steady state, the 
fluctuations rapidly relax to the equilibrium values which are small. These 
small fluctuations can be amply represented as corrections to the mean 
path and the approximations like the system size expansion (2'3) and the 
generalized statistical linearization (4'5) yield satisfactory results during the 
entire time domain. Even for systems with multiple steady states, these 
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approximations perform fairly well, (4,s) if the evolution is from the exten- 
sive regime. However, for the passage from unstable steady states, since the 
solution process is far from Gaussian, these "linear" approximations break 
down. For such problems, the scaling theory (6'7) of Suzuki, WKB method (8) 
of Caroli et al. and the integral transform method (9) of Haake prove to be 
very useful. It should be pointed out, however, that these methods do not 
correctly predict the asymptotic fluctuations. 

There have been attempts to solve the FPE exactly, and noteworthy 
amongst these are the eigenfunction method (1~ and the path integral 
formulation. (ll'12) The eigenfunction method, for its application, demands 
the knowledge of the complete eigen spectrum of the FPE set in its self 
adjoint form, which is rather difficult to obtain. The path integral formula- 
tion, though formal, is easily amenable for subsequent approximations. 

Our recent investigations in this problem revealed that Trotter's for- 
mula,(13) widely used in perturbation theory, (14) can be profitably exploited 
to study nonlinear FPE. We first apply Trotter's formula on a linear FPE 
and derive the well known Ornstein-Uhlenbeck solution. (~ We then apply 
it to a general nonlinear FPE and obtain a formal integral representation of 
the solution process which is equivalent to the path integral result. Then we 
show that Suzuki's scaling result (v) emerges naturally as the lowest-order 
approximation to our general formulation. 

The plan of the note is as follows. In Section 2 we formulate the 
method and illustrate it with the simple example of a linear FPE. Section 3 
contains the result for the general nonlinear FPE. Section 4 is devoted for 
the approximate solution. The physical interpretation and limitations of the 
approximation are also discussed. Conclusions are brought out in Section 5. 

2. THE METHOD AND ITS ILLUSTRATION ON A SIMPLE EXAMPLE 

We consider a FPE given by 

-~ P(x,  t) = LP(x ,  t) 

where 

(la) 

3 2 
o , (lb) 

L = - y ~--~x ~X 2 

The formal solution of the above partial differential equation is 

P(x,  t) = etLp(x, O) (2) 

Since L is a sum of two non commuting operators, the exponential operator 



Solution of Fokker-Planck Equation Using Trotter's Formula 547 

e tL cannot be expressed in terms of simple products of functions involving 
each of these. Nevertheless the solution of Eq. (2) can be obtained by using 
the Trotter's product formula which reads as 

e A+B= lim (eA/"ee/n)" (3) 

where A and B are two arbitrary operators. The solution can be formally 
expressed as 

P(x , t )=  lim exp - b  d C(x) exp a - -  P(x,O) (4a) 
" ~  dx dx  2 

where 

a = e t / n  and b = y t / n  (4b) 

In the remaining part of this section we illustrate the use of Eq. (4) on 
a linear Langevin equation for which 

C(x) = - x (5a) 

with the initial condition 

P(x,O) = 8(x - y) (5b) 

For convenience of algebraic manipulations we use the integral representa- 
tion of the delta function and write the solution as 

where 

It is easy to show that 

and 

P(x,t)  = lim | (m  dke-ikxeiky 
n-->~ 2qr J_ ce 

O=exp(  b d-~-xtexp{a d2 ] , dx 2 

e a d 2 / d x 2 e  - i kx  = e - ak2 - i kx  

(6a) 

(6b) 

(7a) 

exp(b ~x x ) e x p ( - i k x ) =  ebexp(--ikebx) (7b) 

Therefore 

O n e  - i k x  = exp{-ak2[1  + e 2b  + " ' "  + e 2 ( n - 1 ) b ] } e n b e - i k e " b x  

Summing the geometric series in the above, we get 

O"e- ikX=exp{-a[e  2"b- 1]k2/(e 2b- l)}e -ike'bx (8) 
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Applying the limit of n ---> oo in Eq. (8) and using the fact that 

lim a _ n-~oo e2b_ 1 27 

we get 

lim One -ikx= exp[ - c ]erte- (9) n-+or ~ (e2vt -- 1)k2 ikeVlx 

Substituting Eq. (9) in Eq. (6a) and interchanging order of integration and 
operation of O we get 

P(x,t)= ~ f'_2dkeV'exp[- ~ ( e  2v'-  1)k2]exp(-ik[xe r' - y ] }  

=[2rr~(1-e-2r')]-'/2exp[-(x-ye-r*)2/~(1-e-2V')j 
(lO) 

which is the same as the Ornstein-Uhlenbeck solution. (1) 
It is trivial to extend the solution for an initial Gaussian density given 

by 

p(x,O)=[2~ra2]-l/2exp[-(x- y)2/2o 2] ( l la)  

Again using the integral representation of P(x, 0) as 

P(x,0) = ~ ;,_,o dkexp(-ikx- k2o2/2 + iky) ( l lb)  
o o  

and interchanging the order of integration and operation of O we get 

P(x,t) = ~--~;'_edkeVtexp(-k2[ ~Y (e2v' - 1 ) +  -~-~ + ik(y - xert)} 

= (2~r[ o02e-2Vt + ~ (1 - e-2V')] } - ' /2 

xexp{-(x-ye-V)2/2[02e-2Vt+ -~(1y - e-2rt)] } (12) 

In deriving the above result (which is the same as the Ornstein-Uhlenbeck 
solution (1)) we have utilized Eq. (9). 

3. SOLUTION FOR THE GENERAL PROBLEM 

Now we consider the solution for general C(x) with the initial condi- 
tion given by Eq. (5b). Further generalization for arbitrary initial condition 
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is straightforward. We proceed along the same line as 
section. 

It is easily seen that 

e x p [ - b  d 

where 

in the previous 

1 e x p [ - b C ( x )  d C(x) dx ]C(x) f (x )  

C[G(x)] 
C[x] ~ G ( x ) ]  

G(x) = t = F - ' ( F ( x ) e  -b) 

In the above the nonlinear function F(x) is given by 

[; F(x) = exp ' C x' 

(13) 

(14a) 

(14b) 

Therefore we get 

Oe_,kx _ C[ G(x)] C[x] e x p [ - a k 2 -  ikG(x)] = H(k ,x )  (15) 

Subsequent application of the operator O on Eq. (15) is not obvious. 
The trick we employ is to perform Fourier transform and inverse transform 
on Eq. (15) and write 

Oe-ikx-- 2~zl f_~oodkle-iklxfdx'eik'x'H(k'x') (16) 

In the above equation the limits of x I integral is to be chosen such that 
G(x) is real. Now we can operate O in Eq. (16). This process can thus be 
done n number of times. Thus we get the expression for P(x, t) as 

P(x , t )=  lim 1 f .  f n~or (2v)" "" dkn-l " " " dkldkdxn-l  " " dxl 

• exp{i[k~,_,x, 1 31- " ' "  4 -  klX ' -Iv ky] )  

• H(k ,_ ,  , x ) . . .  H(k,  Xl) (17) 

Starting from Eq. (14) it is easy to show that 

da(x) 0~ C[G(x)] 
dx - Ox- C[x] (18) 

Working with the transformed variable ~ and using the fact that 

e (lL t) dr = P (x, t) dx (19) 
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we get 

P(~, t )  = lim ~ " ' "  1 ' ' "  dkldkd4n-l''" d41 

• exp{ i[ k . _ t G - ' ( ~ n _ , ) +  " ' "  + k~G 1(41)4- ky]} 
•  

• e x p { - i [ k n _ l ~ +  . ' '  + k4,]} (20) 

Performing (k} integrations, we get 

P ( ~ , t ) =  lira 1 f f :  . . .  f~_~d( ,_  . . . d 4 ,  n-~oo (4r oo 1 

• e x p ( -  1 { [ 4 -  G- ' (~ ,_ , ) ]2  

These are the main results of this paper. They are equivalent to the ones 
obtained via path integral formulation (~1'~2) of the problem. 

4. APPROXIMATE SOLUTION AND DISCUSSIONS 

Equations (20) and (21) are the formal integral representations of the 
solution process. For evaluating these integrals approximations on the 
function G -1 is required. For the purpose of illustration we take a specific 
example widely studied in the context of passage from an unstable point, 
given by 

C ( x )  = x - g x 3 (22) 
Y 

For this case the nonlinear transformation ~-- G(x)  reads as 

/I 1 -b g -2b) (23a) = xe 1 - --x2(1 - e 
7 

and 

/ [ ~ ~  t e 11/2 g,-2.  2b 1) (23b) G - ' ( ( ) = ~ e b /  1 + - 

To a first order approximation in 4, Eq. (23b) reduces to 

G -~(4) ~-- 4e b (24) 

Suzuki (71 has demonstrated this approximation to be valid in the scaling 
limit (i.e., e ~ 0 and b fixed). This result is true for any C(x)  with x as the 
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leading term. (7) It is expedient to apply this approximation to Eq. (20). For 
this choice, the {~) integrals turn out to be delta functions in {k} which 
can be trivially handled. Carrying out the (k)  integrations of this expres- 
sion and changing the argument of ~ to the actual time of interest 7t, we get 

E   exp[ l P(~(yt),t) = 2Tr-~ (1 - e -2vt) -(4 _y)2/V ) 

(25) 
This result is the same as the scaling solution (7) of Suzuki. Here also it is 
the presence of the small diffusion constant e that permits us to arrive at 
this approximate solution. The connections between the scaling solution 
and the path integral result has already been established by Suzuki. (7) 
Another remark we would like to make is that we do not throw away terms 
of order b 2 or higher. Though it may simplify algebra, we believe it will lead 
to erroneous results as can be easily seen with the example of the Ornstein- 
Uhlenbeck solution. 

Suzuki obtains the above solution by a different approach. The essen- 
tial idea there is that the transition from the unstable state is largely 
dictated by the initial fluctuations (since fluctuations are essential for the 
evolution of the system from the unstable steady state). However, in the 
intermediate time fluctuations are unimportant and the nonlinearity of the 
system "completely" determines the evolution. Suzuki's idea is to go over 
from the original nonlinear Langevin equation to an equivalent linear 
equation (obtained via a nonlinear transformation to be discussed later) in 
which we have a multiplicative noise. The noise term is approximated in 
such a manner that the initial fluctuations are correctly taken care of. By 
this procedure the time evolution in the initial and intermediate time 
domain is fairly well represented. 

Consider the nonlinear Langevin equation 

dx dt - 7C(x) + ~l(t) (26) 

where ~(t) is Gaussian and white. Let us now make a nonlinear transforma- 
tion G(x, t). Then 

a a ( x ,  t) [ OG OG] OGntt, (27) clt - vC  ( x ) 3yx + - U  + ' '  

We now demand the quantity in parentheses to be equal to zero 

0G 0G=0 (28a) yC ( x ) 3Yx + 

The general solution of this partial differential equation is 

G(x, t) = •( F(x)e- vt ) (28b) 
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where 

F(x) = exp[ f;dx'/ C(x') ] 

The particular solutions for the initial condition G(x, O) = x is 

G(x, t) = F - ' ( F ( x ) e  -r t )  

As shown by Suzuki, 

(28c) 

~G -Tt a x  - e + h i g h e r  o r d e r  

and hence it may be sufficient to truncate it to e -~'t. In this case the 
resulting equation 

dG -~ - e -  Vt~l( t) (29) 

can be trivially solved and we get the so-called scaling solution. Here we 
have correctly incorporated the nonlinearity and initial fluctuations. This in 
turn guarantees satisfactory results in the initial and intermediate time 
domains. However, the fluctuations are absent asymptotically [see Eq. (29)] 
and hence it fails in that limit. At this stage it is worthwhile looking at the 
exact asymptotic solution 

P(x' ~) = c~ x exp[ Z f xC(x')dx' (30) 

Notice that the diffusion constant E occurs in a nonanalytic fashion in Eq. 
(30). Thus it is clear that no finite-order perturbation theory can correctly 
represent the asymptotic solution. In this context it is pertinent that in 
principle we may make use of the two parameters in determining G(x) 
which is the solution of a first-order partial differential equation in two 
variables [see Eq. (28a)]. For the particular choice of G(x,O)= x, the 
function is independent of ft. It may be interesting to investigate whether 
there exists a function G dependent On fl so that we can impose the 
condition of correct asymptotic solution also, on the choice of ft. 

5. C O N C L U S I O N S  

We have shown in this note that the application of Trotter's product 
formula leads to a straightforward derivation of the Ornstein-Uhlenbeck 
solution for a linear FPE. The method, when applied to the general 
nonlinear FPE, yields an integral representation, equivalent to that ob- 
tained via path integral formulation. This representation is amenable to 
approximation. In the lowest order approximation Suzuki's scaling result 
emerges. Physical interpretation and limitations of the approximation are 
discussed. 
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